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Abstract.

Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level

rise and anthropogenic modification. The productivity and even survival of salt marsh vegetation depends on the topographic

evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable

landscapes. Determining platform boundaries currently relies on supervised classification methods requiring near-infrared data5

to detect vegetation, or demands labor-intensive field surveys and digitization. We propose a novel, unsupervised method to

reproducibly isolate saltmarsh scarps and platforms from a DEM, referred to as Topographic Identification of Platforms (TIP).

Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical

scarps: based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps

upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six saltmarshes in10

England with varying tidal ranges and geometries, for which topographic platforms were manually distinguished from tidal

flats. Agreement between manual and unsupervised classification exceeds 94% for DEM resolutions of 1 m, with all but one

sites maintaining an accuracy superior to 90% for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the

TIP method are comparable in surface area to digitized platforms, and have similar elevation distributions. We also find that

our method allows the accurate detection of local bloc failures as small as 3 times the DEM resolution. Detailed inspection15

reveals that although tidal creeks were digitized as part of the marsh platform, unsupervised classification categorizes them as

part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would have

increased accuracy if used in combination with existing creek detection algorithms. Fallen blocs and high tidal flat portions,

associated with potential pioneer zones, may also be areas of discordance between our method and supervised mapping.

Although pioneer zones prove difficult to classify using a topographic method, it also suggests that these transition areas20

should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms.

Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible

and sufficient to monitor and analyze topographic evolution.
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1 Introduction

Salt marshes are highly dynamic ecosystems, sequestrating on average 210 g CO2 m-2 yr-1 through plant growth and decay

(Chmura et al., 2003) and capturing additional inorganic sediment when they are submerged (Nardin and Edmonds, 2014). This

productivity has allowed salt marshes to match historic sea level rise (Kirwan and Temmerman, 2009) and laterally expand

when sediment inputs were sufficient (Kirwan et al., 2011). It also places them among the most valuable ecosystems in the5

world (Costanza et al., 1997), and they provide diverse ecosystem services such as flood attenuation (Möller and Spencer,

2002; Shepard et al., 2011), blue carbon sequestration (Chmura et al., 2003; Coverdale et al., 2014), and contaminant capture

(Nelson and Zavaleta, 2012). Their economic value combined with their alarming retreat (Day et al., 2000; Duarte et al., 2008;

Kirwan and Megonigal, 2013) makes monitoring the evolution of salt marshes a pressing management imperative as well as a

scientific endeavor.10

The most closely monitored properties of salt marsh ecosystems are ecological assemblages and elevation, as they are

both essential to understand ecogeomorphic processes (Reed and Cahoon, 1992). For instance, elevation determines flooding

frequency and therefore influences pioneer vegetation encroachment (Hu et al., 2015), which in turn affects vertical accretion

through inorganic sediment capture (Pennings et al., 2005; Mudd et al., 2004, 2010). Individual plants also react to elevation

by modifying their root to shoot length ratios, generating feedbacks between organic material build-up and sediment capture15

(Mudd et al., 2009). The variable intensity of these ecogeomorphic feedbacks enables salt marshes to accrete in response to

variations in sea level, thus maintaining their place in the tidal frame (Kirwan and Temmerman, 2009; Crosby et al., 2016).

The objective detection and analysis of vegetation patterns is a mature field, with habitat mapping commonly undertaken

through the analysis of spectral properties such as the Normalized Difference of Vegetation Index (NDVI) (Jucke van Beijma,

2015). NDVI mapping is now mature to the extent that it requires only a minimum of ground-truthing to determine the presence20

and type of vegetation (Hladik and Alber, 2014). This index has been shown to consistently differentiate vegetated areas from

tidal flats (Tuxen et al., 2008) and flooded channels from dry land despite the sensitivity of classification algorithms (Belluco

et al., 2006; Wang et al., 2007).

Spectral data sources, however, are not sufficient to provide the topographic information necessary to fully understand

morphodynamic processes: although Digital Elevation Models (DEMs) have been successfully generated from habitat maps25

in the Venice lagoon (Silvestri et al., 2003), additional influences on halophyte distribution such as groundwater circulation

(Moffett et al., 2010, 2012) can lead to mismatches between topography and habitats (Hladik et al., 2013). These additional

influences on habitat distribution prevent the reliable use of spectral data to infer topography. Furthermore, delineating salt

marsh platforms exclusively from spectral sources encourages morphological studies to define salt marshes dominantly from

an ecological perspective, whereas the physical setting, most notably the elevation within the tidal frame, plays a key role in30

maintaining ecosystem health (e.g., Morris et al., 2002).

The topographic data necessary to identify marsh platforms already exist: the multiplication of freely available high reso-

lution topographic datasets from lidar or structure from motion (SfM) techniques means that DEMs of horizontal resolutions

below 1 m are increasingly common on salt marshes, and offer vertical accuracies below 20 cm even without correcting for
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vegetation (Sadro et al., 2007; Wang et al., 2009; Chassereau et al., 2011). At these resolutions, most scarps and channels are

detectable on a DEM, and several automated topographic methods already allow the identification of tidal channel networks

(Fagherazzi et al., 1999; Liu et al., 2015). However, contrary to spectral datasets, tools designed to accurately delineate the

extent of salt marshes through means other than manual digitization are lacking.

In this study, we propose an unsupervised method to topographically differentiate marsh platforms from tidal flats, which5

we refer to as Topographic Identification of Platforms (TIP). The TIP method aims to reproducibly and accurately delineate

marsh platforms using only a DEM as input, while also reducing identification costs and enabling systematic topographic

analyses of multiple salt marshes. The processes that form salt marsh platforms can be described by ecological alternate stable

states theory (Schroder et al., 2005) and geomorphic bifurcation models (Fagherazzi et al., 2006; Defina et al., 2007). These

processes cause salt marshes to develop a distinctive, biologically-mediated topographic structure consisting of several sub-10

horizontal platforms, separated from tidal flats and from each other by a subvertical scarp and dissected by incising channels

(Temmerman et al., 2007; Marani et al., 2007, 2013). The TIP method exploits this characteristic topography, which is clearly

visible on high-resolution DEMs and their associated slope rasters, to identify scarps and steep channel banks. As our method

uses topographic signatures of marsh platforms, it will reflect the interplay between sedimentation, erosion, and biomass

(Fagherazzi et al., 2012) rather than the distribution of specific macrophyte species and should therefore be complementary15

to, rather than a replacement for, methods that detect plant zonation on marshes. We compare TIP-detected platforms with

six manually digitized platforms from English marshes of different horizontal resolutions, demonstrating the potential of this

method for quantitative topographic analyses and short- to mid-term monitoring.

2 Methodology

The TIP method automatically detects scarps and platforms of salt marsh systems from a DEM with no manual calibration20

requirements. Its general process is described in Fig. 1, and includes the possibility of filtering (step 1) and degrading (step 2)

the DEM; the effects of both treatments are examined in the discussion. A slope raster is then generated by fitting a polynomial

surface to topographic data and taking the derivative of this surface (Hurst et al., 2012; Grieve et al., 2016) (step 3). Steps 4 and

5 are novel algorithms developed in this study to isolate scarps and platforms. The results of the isolation process are compared

to manually generated platforms (step 6) to generate a comparison map (step 7).25

2.1 Test sites

We test the TIP method on six sites in England, selected for the availability of airborne lidar data in the form of gridded 1 m

resolution rasters, provided by the UK Environment Agency (http://environment.data.gov.uk/ds/survey/), and for the diversity

of their morphologies and tidal ranges. For each site, marsh platforms were digitized on an unfiltered and non-degraded DEM

at a scale of 1: 2,500, using the open-source software QGIS (step 6 in Fig. 1). Source data were flown in 2012 for all sites,30

unless noted otherwise. The locations of the selected sites are shown in Fig. 2.
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Shell Bay, Dorset (S1) is a shallow bay with a spring tidal range of 2.4 m, located in Poole Harbour, a limited entrance bay

(sensu Allen (2000)) protected from strong waves. The marshes in Shell Bay display jagged outlines, indicative of low wave

and tidal current stress (Leonardi and Fagherazzi, 2014). The Stour Estuary marshes (S2) 6 km upstream of the meso-tidal Stour

mouth are subject to a spring tidal range of 3.8 m and stronger tidal currents due to their estuarine fringing position (sensu

Allen (2000)), and therefore display more linear boundaries. The Stiffkey marshes (S3) are back-barrier marshes (Allen, 2000),5

which experience a 4.7 m spring tidal range and display signs of erosion and accretion. These recent perturbations to the marsh

surface provides an interesting challenge for topographic detection of marsh extents. The macro-tidal Medway estuary marshes

(S4, spring tidal range of 6.4 m) were chosen due to the presence of numerous channels in the tidal flats. In order to test the

ability of our method in regions with extreme tidal ranges, we also analysed two mega-tidal sites: Jenny Brown’s Point marshes

(S5, spring tidal range of 9.2 m) and the Parrett estuary (S6, spring tidal range of 11.8 m), where sand dunes, different levels10

inside the tidal flats, saltings and sunken platforms will test the limits of the method’s ability to correctly delineate marshes in

these environments.

2.2 Preprocessing Topographic Data

The TIP method isolates marsh platforms from a DEM up to their seaward limits by detecting the topographic signature

generated by the development of salt marshes. The definition of landward boundaries can vary significantly with context, and15

may be defined by a vegetation zonation change (Mo et al., 2015), agricultural parcels, or infrastructure (Feagin et al., 2010).

Topographic input data is therefore clipped to the landward limit of the platform, at the discretion of the user. In the preparation

stage, local slope is calculated from the DEM by fitting a second order polynomial surface (Hurst et al., 2012) with a circular

window radius equal to three times the horizontal resolution of the DEM. The DEM may be passed through a Wiener filter

(Wiener, 1949; Robinson and Treitel, 1967) to reduce noise from lidar datasets and/or degraded by averaged subsampling20

before the determination of slope to match complementary datasets. The effect of enabling these optional treatments is further

discussed in the results section. Although methods exist to account for vegetation cover in the DEM (Hladik and Alber, 2012;

Wang et al., 2009; Sadro et al., 2007; Chassereau et al., 2011; Montané and Torres, 2006), we chose not to apply these

corrections as we wanted to ensure that the TIP method can be applied without information on the vegetation assemblages at a

given site.25

2.3 Scarp routing

Tidal flats and salt marshes occur mostly on low energy coasts (Allen, 2000), characterized by low local relief and slopes.

They therefore display similar local slope values, and this parameter alone is insufficient to differentiate between tidal flats

and marsh platforms. Likewise, although marsh platforms are locally higher than tidal flats and channels, this may not be the

case for extensive marsh systems, where long-shore declivity may cause portions of the tidal flats to be higher than distant30

emergent platforms. Therefore, elevation alone, though it may be used to visually identify salt marsh platforms, is insufficient

for objective platform detection. We address this problem by investigating transition features such as channel banks and erosion

scarps, which are outliers in both slope and elevation rasters. These features are commonly defined by steep local slopes,
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particularly in mature and eroding systems (Defina et al., 2007; Marani et al., 2013). Furthermore, scarps connect marsh

platforms to tidal flats, and therefore represent a distinct break in elevation between the two. However, newly formed or

seasonal marshes up to the establishment phase of development (Corenblit et al., 2015) have little impact on local topography

and will not have formed platforms: they are unlikely to be detected by a topographic method. In this study, we therefore focus

on the identification of scarps and steep channel banks as a precursor to the detection of platforms, referred to as step 4 in Fig.5

1.

To reduce computational costs, we delineate an initial search space to initiate the detection of scarps by isolating steep areas

of the landscape, weighted by their elevation. We first calculate the relief of each pixel, Ri,

Ri = zi − zmin, (1)

where zi [dimensions L] is the elevation of the pixel and zmin [L] is the minimum elevation in the DEM. We then divide10

this relief by the maximum relief in the DEM to get a dimensionless relief at each pixel, R∗
i :

R∗
i =

Ri

zmax − zmin
(2)

A similar procedure is followed for slope, where Rs [dimensionless] is determined by the slope at a pixel, Si minus the

minimum slope Smin:

Rsi = Si −Smin, (3)15

and the dimensionless version is calculated as:

Rs∗i =
Rsi

Smax −Smin
(4)

We then multiply these two metrics at each pixel to create the dimensionless parameter P ∗
i at each pixel:

P ∗
i = R∗

i Rs∗i (5)

This dimensionless product is useful for highlighting steep areas at high elevations (Fig. 3): the higher the value of P ∗
i , the20

steeper and higher the pixel is. P ∗
i could vary between 0 and 1, where a value of 0 would mean that a pixel was at both the

lowest elevation and gradient in the DEM, and vice-versa for a value of 1.

We use the properties of the distribution of P ∗ to define the first search space, which we call Ss1. With the exception of

macrotidal sites S5 and S6, the pdf of P ∗ decreases monotonically with increasing P ∗, and at sites S5 and S6 the pdf decreases

monotonically after a peak value (Fig. 3a). When f(P*) < max(f(P*)) and P* > max(P*), the derivative of the pdf is negative and25
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increasing, i.e., the slope of the pdf curve becomes gentler with increasing P ∗. We therefore define the threshold value P*
th

where the slope of the pdf is equal to a threshold slope, Spthresh, on the declining limb of the pdf curve (Fig. 3a). In this study

we optimize the threshold value Spthresh to improve the classification of each site, as described in the Results section. The first

search space, Ss1, is defined as those pixels where P* > P*
th, as shown in Fig. 3b. The search space Ss1 is also schematically

represented as grey cells in Fig. 4a (step 4.1)5

We then define a square kernel K3 of 3 cells in width around each cell in Ss1. If more than one cell of K3 is included in Ss1,

the cell containing the local slope maximum in K3 is flagged as a first order scarp cell Sc1. If one given K3 already contains an

Sc1 cell that is not the central cell, the central cell will be flagged as an Sc1 if and only if it is the next local maximum in K3.

This results in a patchwork of first order scarp cells (step 4.2 in Fig. 4a).

For each first order scarp cell Sc1, we then flag two second order cells Sc2 as neighboring cells with the next steepest slopes10

contained in the search space and not in contact with each other (red outlines in Fig. 4b). If two Sc1 cells are adjacent, only the

cell with the higher slope will be flagged as a Sc2 cell (step 4.3 in Fig. 4b). This generates a patchwork of first order cells (black

outlines Fig. 4b) flanked by one or two second order cells (red outlines in Fig. 4b). Starting from the second order cells Sc2, we

prolong the scarps by finding the cell with the steepest slope that is not adjacent to another identified scarp cell of two lesser

orders, within a K3 kernel centered on the previously identified cell. For example, on the third iteration Sc3 cells are identified15

in a K3 kernel centered on a Sc2 cell and must not be adjacent to an Sc1 cell. Generally, Scn cells are identified in a K3 kernel

centered on a Scn-1 cell and must not be adjacent to an Scn-2 cell. This routing procedure is applied in all kernels containing no

more than two scarp cells and repeated until no cells fit the conditions or the order n is equal to 100 (blue outlines, step 4.4 in

Fig. 4b).

This procedure produces a large number of scarps: small creeks within the platform and in higher portions of the tidal20

flat tend to be selected during this procedure. We use a further algorithm to thin these scarps and eliminate creeks. The first

procedure eliminates low elevation scarps. We first define a kernel of 9 cells in width K9 (i.e., a square kernel of 81 pixels with

the pixel being interrogated at its center) and compare its maximum elevation max(ZK9) to the 75th percentile q75 of the entire

DEM. Cells that do not satisfy the condition max(ZK9) > ZKthresh × q75 are discarded from the finale ensemble of scarps

(step 4.5 in Fig. 4c), where ZKthresh is a parameter which we optimize below. Each K9 kernel containing less than 8 flagged25

cells is then discarded from the ensemble of scarps; after this procedure finishes we are left with the final ensemble of scarps

(step 4.6 in Fig. 4d).

2.4 Platform identification

We identify marsh platforms based on the final ensemble of scarps (step 5 in Fig. 1). The final ensemble of scarps becomes a

new search space Ss2. We then create a square kernel 3 cells in width (K3) around each cell in this new search space. Using30

this kernel we identify first order platform cells, Pc1, which are defined as all cells within K3 that have higher elevation values

than the central cell of the kernel (i.e., those that are higher in elevation than the cells in the final scarp ensemble). We do this

because platform cells are located at higher elevations than the scarp cells separating them from tidal flats. We use a kernel

rather than a simple blanket elevation threshold over the entire DEM because longitudinal elevation variations may cause some

6
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tidal flat cells to be higher than scarp cells. Each Pc1 cell that is not adjacent to at least 2 other Pc1 cells is considered a product

of isolated situations and eliminated from the ensemble of platform cells.

Following this initial selection of platform cells, we proceed to iteratively fill the platforms. At this point, the initial ensemble

of platform cells, Pc1, is clustered around the final ensemble of scarps since we have only used a 3 pixel wide kernel centered

on scarp cells to create the ensemble of Pc1 cells. We then iterate using a filling algorithm. The first iteration uses the cells5

Pc1, the second Pc2, and so on. In each iteration of Pcn cells, new cells are identified using two kernels. First, we define a local

elevation condition using an 11 pixel wide kernel K11: we find the maximum elevation in this kernel and then subtract 20 cm to

define the minimum local elevation for a platform pixel. The 20 cm leeway is applied to account for local elevation variations

on the platforms. We then use a 3 pixel wide kernel K3 within K11 to identify any cells in the next iterations’ platform ensemble

(Pcn+1). These cell must meet two conditions: i) that they are higher than the local elevation threshold identified with the 1110

pixel kernel, and ii) that their distance to the nearest cell in the final scarp ensemble is greater than their distance to platform

cells from previous iterations. The first condition is simply to ensure the platform is indeed a low relief surface, and the second

is to ensure the iterative process fills the platform away from the scarps. The second condition is also necessary to ensure the

platform filling process does not cross scarps. This iterative process is repeated until n reaches an arbitrary value of 100, found

to be sufficient to fill the entirety of the platform surface area for our sites.15

This process results in platforms surfaces that are spatially continuous, but in some instances sections of the tidal flat with

relatively high elevations may also have been identified as marsh platforms. These areas are lower than marsh platforms by

the height of the scarp separating them. We filter these cells by using the elevation properties of the entire DEM. A number

of authors have shown that there is a gap in the probability distribution of elevations in intertidal landscapes that separates the

majority of tidal flats from the majority of marsh platforms in micro-tidal environments (e.g., Fagherazzi et al., 2006; Defina20

et al., 2007; Carniello et al., 2009). Such a separation, demonstrated by the decrease in probability between the grey and blue

surfaces in Fig. 5 is also observed in our meso- and macro-tidal sites, including mega-tidal environments such as the Parrett

estuary (Fig. 11). We search for this separation using the probability distribution of elevation, pdf(z) of all cells Pcn, divided

in 100 elevations bins. We determine that the most frequent elevation bin zmax(pdf(z)) is the most likely to contain cells correctly

assigned to the platform ensemble, as the relief of marsh platforms is lower than that of tidal flats. Therefore, only elevations25

lower than zmax(pdf(z)) may contain cells misidentified as marsh platforms.

We then must identify which cells from the population of cells lower than zmax(pdf(z)) form part of the platform, and which do

not. To do this, we truncate low elevations that have a low probability (See red curves in Fig. 5). If we did not do this we would

have a long tail of low elevations from our initial platform identification. We take the probability distribution of the elevation

of the remaining platform cells and calculate the mean probability ¯pdf (i.e., we average the probability from the 100 bins). We30

then search for rzthresh consecutive elevation bins that lie below the elevation of the maximum probability elevation that have

lower probabilities than this average. The reason we use consecutive bins is that we do not want the minimum elevation to be

determined by a single low probability elevation that has spuriously arisen from the binning process. Once we find rzthresh

consecutive elevation bins meeting these criteria we remove all cells lower and including the highest cell that lies within the

rzthresh consecutive bins. We optimize the parameter rzthresh below.35
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Having eliminated these low elevation, low probability cells, we also mark all cells higher than zmax(f(z)) as platform cells.

This may still out leave pools and pansm and platform edges remain jagged. Our final procedure aims to eliminate these

artifacts using the following procedure: for a given value of the order n, we search in the ensemble of Pcn cells for cells that are

surrounded by more than 6 Pc cells of any order within a K3 kernel. The 2 or less empty cells in K3 are then attributed the order

n-1. By iterating through values of n, starting with the order 100 and finishing with the order 2, we progressively fill pools and5

jagged borders of the platform (Fig. 6a). Choosing 6 as the minimal number of platforms cells in each K3 necessary to execute

this "reverse filling" procedure, we ensure that no headlands are generated. We then integrate scarp cells that are connected to

platform cells into the platform ensemble with an order greater than 100. We then repeat the "reverse filling" process (Fig. 6b)

and execute low-elevation elimination procedure (See blue curves in Fig. 5) to obtain the final platform ensemble.

3 Results and discussion10

In order to evaluate the performance of the TIP method, we compare its outputs to manually digitized platforms for all of

our test sites (step 7 in Fig. 1). The results are classified as follows: true positives correspond to matching marsh platform

cells in the tested (automatically processed) and reference (manually digitized) outputs, true negatives to matching tidal flats,

false positives to marsh platforms identified using TIP that are tidal flats in digitized maps, and false negatives where TIP

identifies tidal flats in locations that have been digitized as marsh platforms. The performance of the method is then evaluated15

using three metrics based on the numbers of true positive (TP), true negative (TN), false positive (FP), and false negative (FN)

cells respectively. The accuracy Acc (Fawcett, 2006) describes the likelihood of cells in the tested raster corresponding to the

reference raster:

Acc =
TP + TN

TP + TN + FP + FN
(6)

We also test the performance of the method by reporting two other metrics: the precision, Pre, and the sensitivity, Sen20

(Fawcett, 2006). The precision represents the likelihood of the tested raster overestimating the positives compared to the

reference:

Pre =
TP

TP + FP
(7)

Conversely, the sensitivity Sen, represents the likelihood of the tested raster missing positives compared to the reference:

Sen =
TP

TP + FN
(8)25

If the results of the TIP method perfectly matched that of the manual digitization, all three metrics would have a value of 1.
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3.1 Parameter optimisation

The TIP method contains three user-defined, non-dimensional parameters occurring in sequence during the detection process.

The first parameter, Spthresh, determines the threshold value P*
th for the high-pass filter leading to the selection of the initial

search space, shown in Fig. 3a. The parameter Spthresh influences the solution of the equation df

dP * = Spthresh. The sec-

ond parameter, ZKthresh determines the condition on the refinement of existing scarps in the high-pass filter max(ZK9) >5

ZKthresh × q75, schematically represented in Fig. 4. The third parameter, rzthresh is used in the platform dispersion pro-

cess to determine which percentage of the elevation range below ¯pdf is maintained in the platform ensemble. In this study,

these parameters were set to maximize the average accuracy Ācc across test sites (Fig. 7): the optimized values (Spthresh=-

2.0, ZKthresh=0.85, rzthresh=8) were used for the subsequent performance analysis. Users may modify these parameters as

directed in the code documentation to better fit their study sites.10

3.2 Performance analysis

We report the performance of the TIP method for all six sites in Fig. 8, discriminating between the use or absence of a Wiener

filter and evaluating the influence of progressive resolution degradation. We find the method’s accuracy to be on average of

94.8% at the data’s native resolution of 1 m, whether we apply a Wiener filter (Fig. 8a2) or not (Fig. 8a1). This high accuracy

signifies that the method can be used to determine the marsh platform extent within 5% of a reference value, as shown in Fig.15

9a; this standard is not preserved in perimeter estimates (Fig. 9b). For resolutions of 3 m or less, the accuracy remains on

average above 90% when no filter is applied, with however a decrease in accuracy and a departure from the 5% buffer in area

correspondence in micro- to meso-tidal sites S1 and S2 when a Wiener filter is applied. We attribute this phenomenon to the

more jagged contours of these sites (see Fig. 10a and b), which coarser grids and denoised rasters do not detect. The effect of

grid size is also translated in the strong decrease in detected perimeter observed in Fig. 9b; this is because less complex contours20

lead to shorter boundaries. Such outlines are also more likely to be blurred by the use of a Wiener filter, as demonstrated by the

generally lower precision of sites S1 and S2 when using a Wiener filter (Fig. 8b2). This diminution in precision is compensated

by higher average sensitivity values when using a Wiener filter (compare Fig. 8c2 to Fig. 8c1). We therefore suggest that all

three metrics are used when testing this method on a study site, as no combination of two metrics provides comprehensive

insight as to eventual mismatches. Furthermore, although average accuracies remain above 85% for resolutions of 4 to 5 m, we25

recommend caution when using the method at these resolutions, particularly in micro- to meso-tidal settings where features

may be smoothed beyond the method’s recognition capacities. Use of the TIP method is not recommended for resolutions

coarser than 5m due to the very low accuracies observed for our test sites, making the TIP method adapted to high-resolution

data sources such as lidar or photogrammetry.

Figures 10 and 11 show how the morphology of the landscapes influences the performance of the TIP method. Figure30

10a shows that in micro-tidal environments, the method tends to overestimate the extent of the marsh platform (seen as false

positives), as is confirmed by the higher peak probability of detected platforms as well as the low elevation abrupt tail shown in

Fig. 11a. This is the product of two combined factors: (i) identified scarps are not always complete in micro-tidal environmental

9

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2017-60
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 1 November 2017
c© Author(s) 2017. CC BY 4.0 License.



where scarps are small and more liable to sub-threshold elimination (see Fig. 4, step 4.5); and (ii) the reverse dispersion process

(see Fig. 6) is then likely to encroach on the tidal flat, generating a high number of false positives (see the high left-hand tail

in Fig. 11a). This process is different from the generation of false positives in Fig. 10 c-f, although the sharp cut-off at the

lowest tail of the elevation distribution in Fig. 11 does not show this difference. In these cases, the position of the scarp line

differs between the digitized and the TIP-detected platforms due to elevated portions of the tidal flat being back-to-back with5

the marsh platform. This suggests that some areas of the tidal flat are topographically closer to the platform than to the rest of

the tidal flat and may represent areas likely to be colonized by pioneer vegetation. Conversely, sunken platforms (also called

saltings in mega-tidal environments where they may be small and numerous) that are not delineated by scarps may generate

false negatives, as seen in the central area of Fig. 10e. Most false negatives are however generated by a stricter elimination of

tidal creeks by the TIP method than by manual digitization, a trait particularly visible in Fig. 10b and d. This result confirms10

that topographic analyses of coastal marshes require a simultaneous analysis of tidal creeks, which can be identified from lidar

data using established methods such as those of Fagherazzi et al. (1999) and Liu et al. (2015). Fig. 10c also demonstrates

that accreting meander banks may be correctly located in large channels, while sand bars inside these channels are correctly

excluded from the platform ensemble. This indicates that the use of creek detection methods, while adding an element to

topographic analyses, is unlikely to affect the platform properties.15

3.3 Potential for operational monitoring

As well as providing us with the ability to automate the delineation and analysis of marsh platforms across multiple sites, our

method also allows the objective detection of change in marsh extent through time, with important implications for habitat

monitoring or carbon storage evaluation. We test the capacity of the TIP method to monitor temporal change through the

example of site S6, which was affected by heavy rainfall in the summer of 2007. Rivers such as the Parrett carried high20

discharges, and 1 m lidar data distributed by the Environment Agency shows that between March and October 2007 the North-

Eastern corner of site S6 underwent significant erosion. Blue pixels indicating loss of elevation (between March and October)

in Fig. 12a bear the characteristic shape of slope failures and intersect the platform outline of March 2007 detected both

automatically and manually, indicating that the October platform outline should be further inland.

This retreat of the marsh platform is observed both by the objectively classified (Fig. 12b) and the manually digitized25

platforms (Fig. 12c). However, whereas the digitization effort focuses on the large bank failures, the TIP method also detects

small changes in the DEM at the platform margin (visible in Fig. 12a and b), and may detect them as changes in marsh

platform extent. Consequently, despite a close correspondence between TIP-determined marsh outlines and digitized outlines

(Fig. 12a) near the bank failures, the digitized volume loss is only 81% of the objectively detected volume loss. Pioneer zones,

characterized by shallow slopes and rapid, uneven elevation changes, are also likely to generate small topographic differences30

between the DEMs.
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4 Conclusions

In this study we have presented a novel method which uses the topographic signature of salt marsh platforms to determine

their seaward extent on high resolution DEMs. By combining non-dimensional search parameters and empirical calibration,

it separates marsh platforms from tidal flats with over 90% accuracy for source data of up to 3 m in grid resolution, a result

sufficient to allow quantitative morphology analyses and monitoring, particularly for eroding marshes where scarps are clearly5

defined. Independence from environmental variables means that our method can be used to complement spectral data for iden-

tifying plant types, to better understand feedbacks between sedimentation, deposition and biomass. We tested our method on

six sites with a wide range of spring tidal ranges and found that tidal range has no significant impact on the detection accuracy.

Furthermore, the presence of algae as well as varying vegetation characteristics, which may require specific calibrations with

spectral methods (Morris et al., 2005), do not affect our results. Although we did not test the performance of the TIP method10

on DEM resolutions finer than 1 m, the option of applying a Wiener filter to reduce DEM noise is available to accommodate

DEMs generated from unclassified point clouds, which display higher surface roughness. When combined with creek detec-

tion methods such as those proposed by Liu et al. (2015), we expect the performance of the TIP method to improve due to

the reduction of false negatives. This would also allow the discrimination of channel evolution within the marsh platform and

on the tidal flat, allowing us to simultaneously explore the development of marsh platforms and tidal creeks (D’Alpaos et al.,15

2007, 2010) in sites with strong tidal forcing.

Furthermore, the unsupervised detection of marsh platforms from their topography alone reduces the computational cost

of topographic analysis compared to spectral studies. This promotes the consideration of salt marshes as topographic objects

as well as ecological systems, facilitating holistic, data-driven studies on salt marsh eco-geomorphic responses, and testing

existing models of eco-geomorphic feedback (e.g. Fagherazzi et al., 2012). It also encourages us to think of the topographic20

object separately from the ecological system: mismatches in their respective boundaries may therefore be used to investigate

accretion processes and pioneer zone growth in continuation with the works of Balke et al. (2014) and Hu et al. (2015).

The examination of such processes at smaller scales, such as those obtained with terrestrial lidar stations, may also reveal

characteristic accretion patterns (Balke et al., 2012) which topographic methods may objectively detect. Other developments

of this method may, in time, enable the detection of the spatial extent of other ecosystems, such as riparian wetlands and25

mangrove limits.

Code and data availability. Our software is freely available for download on GitHub as part of the Edinburgh Land Surface Dynamics

Topographic Tools package at https://github.com/LSDtopotools. The software used in this study is available in this release: https://github.

com/LSDtopotools/LSDTopoTools_MarshPlatform/releases/tag/v0.2 (Goodwin et al., 2017).
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Figure 1. Flow chart showing the overall structure of the TIP method and its validation. Each object (rectangle) is obtained by implementing

a routine (square), numbered as follows: 1. Implementation of a Wiener filter (optional); 2. Subsampling by average value (optional); 3.

Calculation of slope by fitting a second order polynomial surface; 4. Scarp identification by routing; 5. Platform identification by dispersion;

6. Manual digitization of a marsh platform; 7. Comparison of the objectively detected platform to the manually digitized platform.
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Figure 2. This map shows the six sites selected from the lidar collection of the UK environment agency, colored by spring tidal range. The

sites are numbered as follows: S1: Shell Bay, Dorset; S2: Stour Estuary, Suffolk; S3: Stiffkey, Norfolk; S4: Medway Estuary,Kent; S5: Jenny

Brown’s Point, Lancashire; S6: Parrett Estuary, Somerset.
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Figure 3. a1-6. Frequency distribution of P* for sites S1-6. The greyed portion of the plot represents pixels that are not included in the search

space Ss1; b. raster representation of P* for site S1: Shell Bay. Values of P* under P*
th use the topographic color scheme, while values above

P*
th use the copper color scheme and are included in Ss1.
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Figure 4. Schematic example of the scarp detection process through maximum slope routing. Panel a. shows two steps. Step 4.1: determi-

nation of the search space Ss1 (greyed cells, darker with arbitrary slope). Step 4.2: Determination of local maxima Sc1 (black outlines with

a plus sign); b. Step 4.3: Determination of Sc2 cells (red outlines). Step 4.4: Determination of Scn cells, n>2 (blue outlines); c. Step 4.5:

Elimination of cells where max(Zk9) < 0.85× q75 (dashed outlines with a minus sign); d. Step 4.6: Elimination of isolated cells (dashed

outlines with a minus sign). The arrows represent the progressive selection of scarp cells.
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Figure 5. Diagram describing the elimination of the tail of the elevation probability distribution function for site S1. The grey filled surface

is the pdf of elevation for the original DEM. The dark red line is the pdf of elevation of the platform after the dispersion process. The orange

line is the pdf of elevation of the platform after truncation of the tail of the distribution. The blue line is the pdf of elevation of the platform

after filling pools and jagged outlines and after the addition of scarps in the platform ensemble. The dark blue line, associated to the blue

filled surface, is the pdf of elevation for the final platform, after the tail of its distribution is truncated a second time. All distributions in this

plot were forced to display the same maximum for clarity.
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Figure 6. Schematic example of the reverse platform filling process. a. Step 5.1: Filling of empty cells adjacent to Pcn cells (grey, dark blue

and blue cells) with and order n-1 (dark blue, blue and light blue cells); b. Step 5.2: Filling of empty cells adjacent to Pcn cells (grey cells)

with and order n-1 (green cells) when scarp cells (black outlines) are included in the platform ensemble. The arrows indicate the dispersion

pattern.
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Figure 7. Accuracy charts used to optimize the three user-defined parameters for the six test sites, each site being colored by spring tidal

range, with no filter. Each group of bars represents the accuracy for one parameter value when applied to all the test sites. The mean accuracy

appears above each group; a. Accuracy for the parameter Opt1. The retained value for Opt1 is -2.0; b. Accuracy for the parameter Opt2. The

retained value for Opt2 is 0.85; c. Accuracy for the parameter Opt3. The retained value for Opt3 is 8.
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Figure 8. Performance of the platform detection method for all sites, colored according to their spring tidal range; a1. Accuracy of the

method when no filter is used; a2. Accuracy of the method when using a Wiener filter; b1. Precision of the method when no filter is used; b2.

Precision of the method when using a Wiener filter; c1. Sensitivity of the method when no filter is used; c2. Sensitivity of the method when

using a Wiener filter.

24

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2017-60
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 1 November 2017
c© Author(s) 2017. CC BY 4.0 License.



Figure 9. Total area (a) and perimeter (b) of the marsh platform in the reference rasters against the same data in the automatically processed

rasters. Data points are colored according to their spring tidal range, with transparency increasing with horizontal resolution. Points circled

in red correspond to rasters in their native resolution when using a Wiener filter.
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Figure 10. Rasters comparing digitized versus extracted marsh platforms superimposed on hillshade data for all six sites after detection with

no Wiener filtering. Black areas are outside of the detection domain and contain no data. Yellow areas correspond to True Positives (TP)

and transparent areas to True Negatives (TN). Red areas correspond to False Positives (FP) and blue areas to False Negatives (FN). Ticks

are placed 50m apart. The sites are numbered as follows: a: Shell Bay, Dorset; b: Stour Estuary, Suffolk; c: Stiffkey, Norfolk; d: Medway

Estuary,Kent; e: Jenny Brown’s Point, Lancashire; f: Parrett Estuary, Somerset.
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Figure 11. Elevation distribution functions for sites S1 to S6 (plots a. to f. respectively). The red line corresponds to the elevation distribution

for the reference rasters. The filled area corresponds to the elevation distribution of the automatically processed rasters, colored according to

their spring tidal range. The grey line represents the elevation distribution of the original DEM, with frequency maxima set to match those of

the automatically processed rasters so as to nullify the effect of empty cells.
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Figure 12. a. Comparison of marsh areas for a portion of S6 between March (green lines) and October (orange lines) 2007, surperimposed

on hillshade data of October 2007. Bright lines correspond to the automatically detected marsh boundary, whereas faded lines correspond to

digitized marsh boundaries. Colored surfaces indicate elevation gain or loss between March and October 2007; b. Map of elevation loss and

gain associated to marsh platform evolution, according to the TIP method. Total volume loss is 1188 m3; c. Map of elevation loss and gain

associated to marsh platform evolution, according to manual digitization. Total volume loss is 966 m3.
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